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An OS is a program that controls the execution of application programs and acts as an interface 
between applications and the computer hardware. It can be thought of as having three 
objectives: 
 
• Convenience: An OS makes a computer more convenient to use. 
 
• Efficiency: An OS allows the computer system resources to be used in an efficient manner. 
 
• Ability to evolve: An OS should be constructed in such a way as to permit the effective 
development, testing, and introduction of new system functions without interfering with service. 
 

Let us examine these three aspects of an OS in turn. 

 
1. The Operating System as a User/Computer Interface 

 
The hardware and software used in providing applications to a user can be viewed in a layered 
or hierarchical fashion, as depicted in Figure below. The user of those applications, the end 
user, generally is not concerned with the details of computer hardware. Thus, the end user 
views a computer system in terms of a set of applications. 
 
An application can be expressed in a programming language and is developed by an application 
programmer. If one were to develop an application program as a set of machine instructions 
that is completely responsible for controlling the computer hardware, one would be faced with 
an overwhelmingly complex undertaking. To ease this chore, a set of system programs is 
provided. Some of these programs are referred to as utilities, or library programs. These 
implement frequently used functions that assist in program creation, the management of files, 
and the control of I/O devices. A programmer will make use of these facilities in developing an 
application, and the application, while it is running, will invoke the utilities to perform certain 
functions. The most important collection of system programs comprises the OS. The OS masks 
the details of the hardware from the programmer and provides the programmer with a 
convenient interface for using the system. It acts as mediator, making it easier for the 
programmer and for application programs to access and use those facilities and services. 

 

Operating System – Objectives and Functions 
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Details of interfaces: 
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Briefly, the OS typically provides services in the following areas: 
• Program development: The OS provides a variety of facilities and services, such as editors 
and debuggers, to assist the programmer in creating programs. Typically, these services are in 
the form of utility programs that, while not strictly part of the core of the OS, are supplied with 
the OS and are referred to as application program development tools. 
 
• Program execution: A number of steps need to be performed to execute a program. 
Instructions and data must be loaded into main memory, I/O devices and files must be 
initialized, and other resources must be prepared. The OS handles these scheduling duties for 
the user. 
 
• Access to I/O devices: Each I/O device requires its own peculiar set of instructions or 
control signals for operation. The OS provides a uniform interface that hides these details so 
that programmers can access such devices using simple reads and writes. 
 
• Controlled access to files: For file access, the OS must reflect a detailed understanding 
of not only the nature of the I/O device (disk drive, tape drive) but also the structure of the 
data contained in the files on the storage medium. In the case of a system with multiple users, 
the OS may provide protection mechanisms to control access to the files. 
 
• System access: For shared or public systems, the OS controls access to the system as a 
whole and to specific system resources. The access function must provide protection of 
resources and data from unauthorized users and must resolve conflicts for resource contention. 
 
• Error detection and response: A variety of errors can occur while a computer system is 
running. These include internal and external hardware errors, such as a memory error, or a 
device failure or malfunction; and various software errors, such as division by zero, attempt to 
access forbidden memory location, and inability of the OS to grant the request of an 
application. In each case, the OS must provide a response that clears the error condition with 
the least impact on running applications. The response may range from ending the program 
that caused the error, to retrying the operation, to simply reporting the error to the application. 
 
• Accounting: A good OS will collect usage statistics for various resources and monitor 
performance parameters such as response time. On any system, this information is useful in 
anticipating the need for future enhancements and in tuning the system to improve 
performance. On a multiuser system, the information can be used for billing purposes. 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 of 30 

2. The Operating System as Resource Manager 
 

 
 

The figure above suggests the main resources that are managed by the OS. A portion of the OS 
is in main memory. This includes the kernel , or nucleus , which contains the most frequently 
used functions in the OS and, at a given time, other portions of the OS currently in use. The 
remainder of main memory contains user programs and data. The memory management 
hardware in the processor and the OS jointly control the allocation of main memory, as we shall 
see. The OS decides when an I/O device can be used by a program in execution and controls 
access to and use of files. The processor itself is a resource, and the OS must determine how 
much processor time is to be devoted to the execution of a particular user program. In the case 
of a multiple-processor system, this decision must span all of the processors. 
 
 
3. Ease of Evolution of an Operating System 
 

A major OS will evolve over time for a number of reasons: 
 
• Hardware upgrades plus new types of hardware: For example, early versions of UNIX 
and the Macintosh OS did not employ a paging mechanism because they were run on 
processors without paging hardware. 1 Subsequent versions of these operating systems were 
modified to exploit paging capabilities. Also, the use of graphics terminals and page-mode 
terminals instead of line-at-a-time scroll mode terminals affects OS design. For example, a 
graphics terminal typically allows the user to view several applications at the same time through 
“windows” on the screen. This requires more sophisticated support in the OS. 
 
• New services: In response to user demand or in response to the needs of system managers, 
the OS expands to offer new services. For example, if it is found to be difficult to maintain good 
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performance for users with existing tools, new measurement and control tools may be added to 
the OS. 
 
• Fixes: Any OS has faults. These are discovered over the course of time and fixes are made. 
Of course, the fix may introduce new faults. 
 

 

 

The first four states in the list below are found on most every Unix system. Other state names 
may appear on different platforms, and some of these are also listed below. 

Idle Nothing to do 

User Running a user's process 

Kernel Handling a kernel call, fault, or interrupt 

Nice Running a user's niced process 

Wait Waiting on some form of i/o 

iowait Waiting on user i/o 

Swap Waiting on swapping or paging i/o 

 

 

The disparity between the I/O devices and the CPU motivated the development of I/O 
Processors (also called I/O channels). 
 
Function: provide data flow path between I/O devices and memory. 
 
Characteristics: 

• Simple (minimal processing capabilities). 
• Specialized, and not too fast, and much less expensive than conventional CPU. 

Computer systems that use channel I/O have special hardware components that handle all 
input/output operations in their entirety independently of the systems' CPU(s). The CPU of a 
system that uses channel I/O typically has only one machine instruction in its repertoire for 
input and output; this instruction is used to pass input/output commands to the specialized I/O 
hardware in the form of channel programs. I/O thereafter proceeds without intervention from 
the CPU until an event requiring notification of the operating system occurs, at which point the 
I/O hardware signals an interrupt to the CPU. 

A channel is an independent hardware component that coordinates all I/O to a set of controllers 
or devices. It is not merely a medium of communication, despite the name; it is a 
programmable device that handles all details of I/O after being given a list of I/O operations to 
carry out (the channel program). 

CPU States  
 

I/O Channels or I/O Processors 
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Each channel may support one or more controllers and/or devices, but each channel program 
may only be directed at one of those connected devices. A channel program contain lists of 
commands to the channel itself and to the controller and device to which it is directed. Once 
the operating system has prepared a complete list of channel commands, it executes a single 
I/O machine instruction to initiate the channel program; the channel thereafter assumes control 
of the I/O operations until they are completed. 

It is possible to develop very complex channel programs, including testing of data and 
conditional branching within that channel program. This flexibility frees the CPU from the 
overhead of starting, monitoring, and managing individual I/O operations. The specialized 
channel hardware, in turn, is dedicated to I/O and can carry it out more efficiently than the CPU 
(and entirely in parallel with the CPU). Channel I/O is not unlike the Direct Memory Access 
(DMA) of microcomputers, only more complex and advanced. Most mainframe operating 
systems do not fully exploit all the features of channel I/O. 

On large mainframe computer systems, CPUs are only one of several powerful hardware 
components that work in parallel. Special input/output controllers (the exact names of which 
vary from one manufacturer to another) handle I/O exclusively, and these in turn are connected 
to hardware channels that also are dedicated to input and output. There may be several CPUs 
and several I/O processors. The overall architecture optimizes input/output performance 
without degrading pure CPU performance. Since most real-world applications of mainframe 
systems are heavily I/O-intensive business applications, this architecture helps provide the very 
high levels of throughput that distinguish mainframes from other types of computer. 
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The design constraints on a computer’s memory can be summed up by three questions: How 
much? How fast? How expensive? i.e. capacity, speed and cost.  
The question of how much is somewhat open ended. If the capacity is there, applications will 
likely be developed to use it. The question of how fast is, in a sense, easier to answer. To 
achieve greatest performance, the memory must be able to keep up with the processor. That is, 
as the processor is executing instructions, we would not want it to have to pause waiting for 
instructions or operands. The final question must also be considered. For a practical system, the 
cost of memory must be reasonable in relationship to other components. As might be expected, 
there is a trade-off among the three key characteristics of memory: namely, capacity, access 
time, and cost. A variety of technologies are used to implement memory systems, and across 
this spectrum of technologies, the following relationships hold: 
 
• Faster access time, greater cost per bit 
 
• Greater capacity, smaller cost per bit 
 
• Greater capacity, slower access speed 
 
The dilemma facing the designer is clear. The designer would like to use memory technologies 
that provide for large-capacity memory, both because the capacity is needed and because the 
cost per bit is low. However, to meet performance requirements, the designer needs to use 
expensive, relatively lower-capacity memories with fast access times. The way out of this 
dilemma is to not rely on a single memory component or technology, but to employ a memory 
hierarchy . A typical hierarchy is illustrated in Figure given below. As one goes down the 
hierarchy, the following occur: 

a. Decreasing cost per bit 
b. Increasing capacity 
c. Increasing access time 
d. Decreasing frequency of access to the memory by the processor 

Thus, smaller, more expensive, faster memories are supplemented by larger, cheaper, slower 
memories. The key to the success of this organization is the decreasing frequency of access at 
lower levels. We will examine this concept in greater detail later in this chapter, when we 
discuss the cache, and when we discuss virtual memory later in this book. A brief explanation is 
provided at this point. 
Suppose that the processor has access to two levels of memory. Level 1 contains 1,000 bytes 
and has an access time of 0.1 μs; level 2 contains 100,000 bytes and has an access time of 1 
μs. Assume that if a byte to be accessed is in level 1, then the processor accesses it directly. If 
it is in level 2, then the byte is first transferred to level 1 and then accessed by the processor. 
For simplicity, we ignore the time required for the processor to determine whether the byte is in 
level 1 or level 2. 
  

Memory Hierarchy 
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Simple Batch Systems 
 
Early computers were very expensive, and therefore it was important to maximize processor 
utilization. The wasted time due to scheduling and setup time was unacceptable. To improve 
utilization, the concept of a batch OS was developed. It appears that the first batch OS (and the 
first OS of any kind) was developed in the mid-1950s by General Motors for use on an IBM 701 
[WEIZ81]. The concept was subsequently refined and implemented on the IBM 704 by a 
number of IBM customers. By the early 1960s, a number of vendors had developed batch 
operating systems for their computer systems. IBSYS, the IBM OS for the 7090/7094 
computers, is particularly notable because of its widespread influence on other systems. The 
central idea behind the simple batch-processing scheme is the use of a piece of software known 
as the monitor. With this type of OS, the user no longer has direct access to the processor. 
Instead, the user submits the job on cards or tape to a computer operator, who batches the 

Types of OS 
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jobs together sequentially and places the entire batch on an input device, for use by the 
monitor. Each program is constructed to branch back to the monitor when it completes 
processing, at which point the monitor automatically begins loading the next program. 

The problems with Batch Systems are following. 

 Lack of interaction between the user and job. 
 CPU is often idle, because the speed of the mechanical I/O devices is slower than CPU. 
 Difficult to provide the desired priority. 

 
Multiprogramming Operating Systems 
 
To overcome the problem of underutilization of CPU and main memory, the multiprogramming 
was introduced. The multiprogramming is interleaved execution of multiple jobs by the same 
computer. 
 
In multiprogramming system, when one program is waiting for I/O transfer; there is another 
program ready to utilize the CPU. So it is possible for several jobs to share the time of the CPU. 
But it is important to note that multiprogramming is not defined to be the execution of jobs at 
the same instance of time. Rather it does mean that there are a number of jobs available to the 
CPU (placed in main memory) and a portion of one is executed then a segment of another and 
so on. 
 
Multiprogramming operating systems are fairly sophisticated compared to single-program, or 
uniprogramming, systems. To have several jobs ready to run, they must be kept in main 
memory, requiring some form of memory management. In addition, if several jobs are ready 
to run, the processor must decide which one to run; this decision requires an algorithm for 
scheduling means extra CPU time to process on this scheduling.  
 

 
Multitasking Operating Systems 
 

Multitasking, in an operating system, is allowing a user to perform more than one computer 
task (such as the operation of an application program) at a time. The operating system is able 
to keep track of where you are in these tasks and go from one to the other without losing 
information. Microsoft Windows 2000 / 7 / 8, IBM's OS/390, and Linux etc. are examples of 
operating systems that can do multitasking (almost all of today's operating systems can). When 
you open your Web browser and then open Word at the same time, you are causing the 
operating system to do multitasking. 
 
Multitasking has the same meaning as multiprogramming in the general sense as both refer to 
having multiple (programs, processes, tasks, threads) running at the same time. Multitasking is 
the term used in modern operating systems when multiple tasks share a common processing 
resource (CPU and Memory). At any point in time the CPU is executing one task only while 
other tasks waiting their turn. The illusion of parallelism is achieved when the CPU is reassigned 
to another task (context switch). There are few main differences between multitasking and 
multiprogramming. A task in a multitasking operating system is not a whole application program 
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(recall that programs in modern operating systems are divided into logical pages). Task can also 
refer to a thread of execution when one process is divided into sub tasks (will talk about multi 
threading later). The task does not hijack the CPU until it finishes like in the older 
multiprogramming model but rather have a fair share amount of the CPU time called quantum 
(will talk about time sharing later in this article). Just to make it easy to remember, multitasking 
and multiprogramming refer to a similar concept (sharing CPU time) where one is used in 
modern operating systems while the other is used in older operating systems. Multitasking 
always refers to multiprogramming but vice versa is not true. 
 
Being able to do multitasking doesn't mean that an unlimited number of tasks can be juggled at 
the same time. Each task consumes system storage and other resources. As more tasks are 
started, the system may slow down or begin to run out of shared storage. 
 

 
Time-sharing Operating Systems 
 

With the use of multiprogramming, batch processing can be quite efficient. However, for many 
jobs, it is desirable to provide a mode in which the user interacts directly with the computer. 
Indeed, for some jobs, such as transaction processing, an interactive mode is essential. 
  
Today, the requirement for an interactive computing facility can be, and often is, met by the 
use of a dedicated personal computer or workstation. That option was not available in the 
1960s, when most computers were big and costly. Instead, time sharing was developed. Just as 
multiprogramming allows the processor to handle multiple batch jobs at a time, 
multiprogramming can also be used to handle multiple interactive jobs. In this latter case, the 
technique is referred to as time-sharing, because processor time is shared among multiple 
users. In a time-sharing system, multiple users simultaneously access the system through 
terminals, with the OS interleaving the execution of each user program in a short burst or 
quantum of computation. Thus, if there are n users actively requesting service at one time, 
each user will only see on the average 1/ n of the effective computer capacity, not counting OS 
overhead. However, given the relatively slow human reaction time, the response time on a 
properly designed system should be similar to that on a dedicated computer. Both batch 
processing and time sharing use multiprogramming.  
 
One of the first time-sharing operating systems to be developed was the Compatible Time-
Sharing System (CTSS) [CORB62], developed at MIT by a group known as Project MAC 
(Machine-Aided Cognition, or Multiple-Access Computers). The system was first developed for 
the IBM 709 in 1961 and later transferred to an IBM 7094.  
 

Recall that in a single processor system, parallel execution is an illusion. One instruction from 
one process at a time can be executed by the CPU even though multiple processes reside in 
main memory. Imagine a restaurant with only one waiter and few customers. There is no way 
for the waiter to serve more than one customer at a time but if it happens that the waiter is 
fast enough to rotate on the tables and provide food quickly then you get the feeling that all 
customers are being served at the same time. This is the example of time sharing when CPU 
time (or waiter time) is being shared between processes (customers). Multiprogramming and 
multitasking operating systems are nothing but time sharing systems. In multiprogramming 
though the CPU is shared between programs it is not the perfect example on CPU time sharing 
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because one program keeps running until it blocks however in a multitasking (modern operating 
system) time sharing is best manifested because each running process takes only a fair amount 
of the CPU time called quantum time. Even in a multiprocessing system when we have more 
than one processor still each processor time is shared between running processes. Time-sharing 
is implemented to have a better response time. 
 
Compatible Time-Sharing System or CTSS, was demonstrated in November 1961. CTSS has a 
good claim to be the first time-sharing system and remained in use until 1973. Another 
contender for the first demonstrated time-sharing system was PLATO II, created by Donald 
Bitzer. 
 

Real-time Operating System 

It is a multitasking operating system that aims at executing real-time applications. Real-time 
operating systems often use specialized scheduling algorithms so that they can achieve a 
deterministic nature of behavior. The main object of real-time operating systems is their quick 
and predictable response to events. They either have an event-driven design or a time-sharing 
one. An event-driven system switches between tasks based of their priorities while time-sharing 
operating systems switch tasks based on clock interrupts.  
 
An RTOS performs all general purpose tasks of an OS, but is also specially designed to run 
applications with very precise timing and a high degree of reliability. This can be especially 
important in measurement and automation systems where downtime is costly or a program 
delay could cause a safety hazard. 
 
To be considered "real-time", an operating system must have a known maximum time for each 
of the critical operations that it performs (or at least be able to guarantee that maximum most 
of the time). Some of these operations include OS calls and interrupt handling. Operating 
systems that can absolutely guarantee a maximum time for these operations are commonly 
referred to as "hard real-time", while operating systems that can only guarantee a maximum 
most of the time are referred to as "soft real-time". In practice, these strict categories have 
limited usefulness - each RTOS solution demonstrates unique performance characteristics and 
the user should carefully investigate these characteristics. 
 

Windows CE, OS-9, Symbian and LynxOS are some of the commonly known real-time operating 

systems. 
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What is a process? 

• A program in execution 
• An instance of a program running on a computer 
• The entity that can be assigned to and executed on a processor 
• A unit of activity characterized by the execution of a sequence of instructions, a current state, 
and an associated set of system resources. 
 
 We can also think of a process as an entity that consists of a number of elements. Two 
essential elements of a process are program code (which may be shared with other processes 
that are executing the same program) and a set of data associated with that code. Let us 
suppose that the processor begins to execute this program code, and we refer to this executing 
entity as a process. At any given point in time, while the program is executing, this process can 
be uniquely characterized by a number of elements which can be found in a Process Control 
Block.  
 

 

 

The information in the preceding list is stored in a data structure, typically called a process 
control block (Figure above), that is created and managed by the OS. The significant point 
about the process control block is that it contains sufficient information so that it is possible to 

Process 
 

Process Control Block 
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interrupt a running process and later resume execution as if the interruption had not occurred. 
The process control block is the key tool that enables the OS to support multiple processes and 
to provide for multiprocessing. When a process is interrupted, the current values of the 
program counter and the processor registers (context data) are saved in the appropriate fields 
of the corresponding process control block, and the state of the process is changed to some 
other value, such as blocked or ready (described subsequently). The OS is now free to put 
some other process in the running state. The program counter and context data for this process 
are loaded into the processor registers and this process now begins to execute.  
 
We can say that a process consists of program code and associated data plus a process control 
block. For a single-processor computer, at any given time, at most one process is executing and 
that process is in the running state. 
 
• Identifier: A unique identifier associated with this process, to distinguish it from all other 
processes. 
• State: If the process is currently executing, it is in the running state. 
• Priority: Priority level relative to other processes. 
• Program counter: The address of the next instruction in the program to be executed. 
• Memory pointers: Includes pointers to the program code and data associated with this 
process, plus any memory blocks shared with other processes. 
• Context data: These are data that are present in registers in the processor while the process 
is executing. 
• I/O status information: Includes outstanding I/O requests, I/O devices (e.g., disk drives) 
assigned to this process, a list of files in use by the process, and so on. 
• Accounting information: May include the amount of processor time and clock time used, 
time limits, account numbers, and so on. 
 

 

 

 

• Running: The process that is currently being executed. For this chapter, we will assume a 
computer with a single processor, so at most one process at a time can be in this state. 
• Ready: A process that is prepared to execute when given the opportunity. 

Process states 
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• Blocked/Waiting: A process that cannot execute until some event occurs, such as the 
completion of an I/O operation. 
• New: A process that has just been created but has not yet been admitted to the pool of 
executable processes by the OS. Typically, a new process has not yet been loaded into main 
memory, although its process control block has been created. 
• Exit: A process that has been released from the pool of executable processes by the OS, 
either because it halted or because it aborted for some reason. 
 

The types of events that lead to each state transition for a process; the possible transitions are 
as follows: 
• Null: New: A new process is created to execute a program. This event occurs for any specific 
reason. 
• New : Ready: The OS will move a process from the New state to the Ready state when it is 
prepared to take on an additional process. Most systems set some limit based on the number of 
existing processes or the amount of virtual memory committed to existing processes. This limit 
assures that there are not so many active processes as to degrade performance. 
• Ready : Running: When it is time to select a process to run, the OS chooses one of the 
processes in the Ready state. This is the job of the scheduler or dispatcher. Scheduling is 
explored in Part Four. 
• Running: Exit: The currently running process is terminated by the OS if the process 
indicates that it has completed, or if it aborts. 
• Running : Ready: The most common reason for this transition is that the running process 
has reached the maximum allowable time for uninterrupted execution; virtually all 
multiprogramming operating systems impose this type of time discipline. There are several 
other alternative causes for this transition, which are not implemented in all operating systems. 
Of particular importance is the case in which the OS assigns different levels of priority to 
different processes. Suppose, for example, that process A is running at a given priority level, 
and process B, at a higher priority level, is blocked. If the OS learns 
that the event upon which process B has been waiting has occurred, moving B to a ready state, 
then it can interrupt process A and dispatch process B. We say that the OS has preempted 
process A. 6 Finally, a process may voluntarily release control of the processor. An example is a 
background process that performs some accounting or maintenance function periodically. 
• Running: Blocked: A process is put in the Blocked state if it requests something for which it 
must wait. A request to the OS is usually in the form of a system service call; that is, a call from 
the running program to a procedure that is part of the operating system code. For example, a 
process may request a service from the OS that the OS is not prepared to perform immediately. 
It can request a resource, such as a file or a shared section of virtual memory, 
that is not immediately available. Or the process may initiate an action, such as an I/O 
operation, that must be completed before the process can continue. When processes 
communicate with each other, a process may be blocked when it is waiting for another process 
to provide data or waiting for a message from another process. 
• Blocked: Ready: A process in the Blocked state is moved to the Ready state when the event 
for which it has been waiting occurs. 
• Ready : Exit: For clarity, this transition is not shown on the state diagram. In some systems, 
a parent may terminate a child’ process at any time. Also, if a parent terminates, all child 
processes associated with that parent may be terminated. 
• Blocked: Exit: The comments under the preceding item apply. 
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Modern general purpose operating systems permit a user to create and destroy processes. 
 
    In unix this is done by the fork system call, which creates a child process, and the exit 
system call, which terminates the current process. 
    After a fork both parent and child keep running (indeed they have the same program text) 
and each can fork off other processes. 
    A process tree results. The root of the tree is a special process created by the OS during 
startup. 
    A process can choose to wait for children to terminate. For example, if C issued a wait() 
system call it would block until G finished.  
 
Old or primitive operating system like MS-DOS are not multiprogrammed so when one process 
starts another, the first process is automatically blocked and waits until the second is finished. 
 

 
 
 
 
 
 
 
Context Switch - When CPU switches to another process, the system must save the state of the 
old process and load the saved state for the new process. 
 
Context-Switch Time is overhead; the system does no useful work while switching.  
 
Context-Switch Time depends on hardware support. 
 
Context-Switch Speed varies from machine to machine depending on memory speed, number of 
registers copied. The speed ranges from 1 to 1000 microsecond 
 

Process Hierarchy 
 

Context Switching 
 



16 of 30 

 

 

 

Long-term scheduler (or job scheduler) – selects which processes should be brought into the 

ready queue (i.e, selects processes from pool (disk) and loads them into memory for 

execution). 

Short-term scheduler (or CPU scheduler) – selects which process should be executed next 

and allocates CPU (i.e, selects from among the processes that are ready to execute, and 

allocates the CPU to one of them). 

Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast). 

Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be slow). 

The long-term scheduler controls the degree of multiprogramming (the number of processes in 

memory) 

Schedulers 
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Medium-term scheduler – to remove processes from memory and reduce the degree of 

multiprogramming (the process is swapped out and swapped in by the medium-term 

scheduler). 

 

 

Independent process cannot affect or be affected by the execution of another process. 

Cooperating process can affect or be affected by the execution of another process. 

Any process that shares data with other processes is a cooperating process. 

 

 

Scheduling criteria is also called as scheduling methodology. Key to multiprogramming is 

scheduling. Different CPU scheduling algorithm have different properties .The criteria used for 

comparing these algorithms include the following: 

    CPU Utilization: Keep the CPU as busy as possible. It range from 0 to 100%. In practice, 

it ranges from 40 to 90%. 

    Throughput: Throughput is the rate at which processes are completed per unit of time. 

    Turnaround time: This is the how long a process takes to execute a process. It is 

calculated as the time gap between the submission of a process and its completion. 

    Waiting time: Waiting time is the sum of the time periods spent in waiting in the ready 

queue. 

    Response time: Response time is the time it takes to start responding from submission 

time. It is calculated as the amount of time it takes from when a request was submitted until 

the first response is produced. 

    Fairness: Each process should have a fair share of CPU. 

Non-preemptive Scheduling: 

In non-preemptive mode, once if a process enters into running state, it continues to execute 

until it terminates or blocks itself to wait for Input/Output or by requesting some operating 

system service. 

 

 

Independent and Cooperating Process 
 

CPU Scheduling 
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Preemptive Scheduling: 

In preemptive mode, currently running process may be interrupted and moved to the ready 

state by the operating system. 

When a new process arrives or when an interrupt occurs, preemptive policies may incur greater 

overhead than non-preemptive version but preemptive version may provide better service. 

It is desirable to maximize CPU utilization and throughput, and to minimize turnaround time, 

waiting time and response time. 

Scheduling Algorithms 

Scheduling algorithms or scheduling policies are mainly used for short-term scheduling. The 

main objective of short-term scheduling is to allocate processor time in such a way as to 

optimize one or more aspects of system behavior. 

For these scheduling algorithms assume only a single processor is present. Scheduling 

algorithms decide which of the processes in the ready queue is to be allocated to the CPU is 

basis on the type of scheduling policy and whether that policy is either preemptive or non-

preemptive. For scheduling arrival time and service time are also will play a role. 

List of scheduling algorithms are as follows: 

Non Preemptive Preemptive 

First-come, first-served scheduling (FCFS)  Round-Robin (RR) 

Shortest Job First Scheduling (SJF)  Shortest Remaining time (SRT)  

 

 

  

The central themes of operating system design are all concerned with the management of 
processes and threads: 
• Multiprogramming: The management of multiple processes within a uniprocessor system 
• Multiprocessing : The management of multiple processes within a multiprocessor 
• Distributed processing: The management of multiple processes executing on multiple, 
distributed computer systems. The recent proliferation of clusters is a prime example of this 
type of system. 
 
Fundamental to all of these areas, and fundamental to OS design, is concurrency. Concurrency 
encompasses a host of design issues, including communication among processes, sharing of 
and competing for resources (such as memory, files, and I/O access), synchronization of the 
activities of multiple processes, and allocation of processor time to processes. We shall see that 
these issues arise not just in multiprocessing and distributed processing environments but even 
in single-processor multiprogramming systems. 
   

Concurrency 
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We can classify the ways in which processes interact on the basis of the degree to which they 
are aware of each other’s existence. Table 5.2 lists three possible degrees of awareness plus 
the consequences of each: 
 
• Processes unaware of each other: These are independent processes that are not intended 
to work together. The best example of this situation is the multiprogramming of multiple 
independent processes. These can either be batch jobs or interactive sessions or a mixture. 
Although the processes are not working together, the OS needs to be concerned about 
competition for resources. For example, two independent applications may both want to 
access the same disk or file or printer. The OS must regulate these accesses. 
 
• Processes indirectly aware of each other: These are processes that are not necessarily 
aware of each other by their respective process IDs but that share access to some object, such 
as an I/O buffer. Such processes exhibit cooperation in sharing the common object. 
 
• Processes directly aware of each other: These are processes that are able to 
communicate with each other by process ID and that are designed to work jointly on some 
activity. Again, such processes exhibit cooperation. Conditions will not always be as clear-cut 
as suggested in Table follows. Rather, several processes may exhibit aspects of both 
competition and cooperation. Nevertheless, it is productive to examine each of the three items 
in the preceding list separately and determine their implications for the OS. 
 

Process Interaction 
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A race condition occurs when multiple processes or threads read and write data items so that 
the final result depends on the order of execution of instructions in the multiple processes. Let 
us consider two simple examples. 
 
As an example, suppose that two processes, P1 and P2, share the global variable a. At some 
point in its execution, P1 updates a to the value 1, and at some point in its execution, P2 
updates a to the value 2. Thus, the two tasks are in a race to write variable a. In this example, 
the “loser” of the race (the process that updates last) determines the final value of a. 
 
For our second example, consider two processes, P3 and P4, that share global variables b and 
c, with initial values b = 1 and c = 2. At some point in its execution, P3 executes the 
assignment b = b + c, and at some point in its execution, P4 executes the assignment c = b + 
c. Note that the two processes update different variables. However, the final values of the two 
variables depend on the order in which the two processes execute these two assignments. If P3 
executes its assignment statement first, then the final values are b = 3 and c = 5. If P4 
executes its assignment statement first, then the final values are b = 4 and c = 3. 
 

 

 

 

Race Condition 
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COMPETITION AMONG PROCESSES FOR RESOURCES:  Concurrent processes come into 
conflict with each other when they are competing for the use of the same resource. In its pure 
form, we can describe the situation as follows. Two or more processes need to access a 
resource during the course of their execution. Each process is unaware of the existence of other 
processes, and each is to be unaffected by the execution of the other processes. It follows from 
this that each process should leave the state of any resource that it uses unaffected. Examples 
of resources include I/O devices, memory, processor time, and the clock. There is no exchange 
of information between the competing processes. However, the execution of one process may 
affect the behavior of competing processes. In particular, if two processes both wish access to a 
single resource, then one process will be allocated that resource by the OS, and the other will 
have to wait. Therefore, the process that is denied access will be slowed down. In an extreme 
case, the blocked process may never get access to the resource and hence will never terminate 
successfully. 
 
In the case of competing processes three control problems must be faced. First is the need for 
mutual exclusion. Suppose two or more processes require access to a single non-sharable 
resource, such as a printer. During the course of execution, each process will be sending 
commands to the I/O device, receiving status information, sending data, and/or receiving data. 
We will refer to such a resource as a critical resource, and the portion of the program that 
uses it as a critical section of the program. It is important that only one program at a time be 
allowed in its critical section. We cannot simply rely on the OS to understand and enforce this 
restriction because the detailed requirements may not be obvious. In the case of the printer, for 
example, we want any individual process to have control of the printer while it prints an entire 
file. Otherwise, lines from competing processes will be interleaved. 
The enforcement of mutual exclusion creates two additional control problems. One is that of 
deadlock. For example, consider two processes, P1 and P2, and two resources, R1 and R2. 
Suppose that each process needs access to both resources to perform part of its function. Then 
it is possible to have the following situation: the OS assigns R1 to P2, and R2 to P1. Each 
process is waiting for one of the two resources. Neither will release the resource that it already 
owns until it has acquired the other resource and performed the function requiring both 
resources. The two processes are deadlocked. 
 
A final control problem is starvation. Suppose that three processes (P1, P2, P3) each require 
periodic access to resource R. Consider the situation in which P1 is in possession of the 
resource, and both P2 and P3 are delayed, waiting for that resource. When P1 exits its critical 
section, either P2 or P3 should be allowed access to R. Assume that the OS grants access to P3 
and that P1 again requires access before P3 completes its critical section. If the OS grants 
access to P1 after P3 has finished, and subsequently alternately grants access to P1 and P3, 
then P2 may indefinitely be denied access to the resource, even though there is no deadlock 
situation. 
 

 

 

 

Problems of Concurrency – Mutual exclusion, Deadlock & Starvation 
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Deadlock can be defined as the permanent blocking of a set of processes that either compete 
for system resources or communicate with each other. A set of processes is deadlocked when 
each process in the set is blocked awaiting an event (typically the freeing up of some requested 
resource) that can only be triggered by another blocked process in the set. Deadlock is 
permanent because none of the events is ever triggered. Unlike other problems in concurrent 
process management, there is no efficient solution in the general case. 
 
Resource Allocation Graph 
A useful tool in characterizing the allocation of resources to processes is the resource 
allocation graph, introduced by Holt [HOLT72]. The resource allocation graph is a directed 
graph that depicts a state of the system of resources and processes, with each process and 
each resource represented by a node. A graph edge directed from a process to a resource 
indicates a resource that has been requested by the process but not yet granted (Figure given 
below). Within a resource node, a dot is shown for each instance of that resource. Examples of 
resource types that may have multiple instances are I/O devices that are allocated by a 
resource management module in the OS. A graph edge directed from a reusable resource node 
dot to a process indicates a request that has been granted (Figure given below); that is, the 
process has been assigned one unit of that resource. A graph edge directed from a consumable 
resource node dot to a process indicates that the process is the producer of that resource. 
Figure C shows an example deadlock. There is only one unit each of resources Ra and Rb. 
Process P1 holds Rb and requests Ra, while P2 holds Ra but requests Rb. Figure d has the same 
topology as Figure c, but there is no deadlock because multiple units of each resource are 
available. The resource allocation graph of Figure e corresponds to the deadlock situation in 
Figure b. Note that in this case; we do not have a simple situation in which two processes each 
have one resource the other needs. Rather, in this case, there is a circular chain of processes 
and resources that results in deadlock. 

 

Deadlock 
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Necessary conditions for Deadlock 
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Do not allow one of the four conditions those may invoke deadlock to prevent deadlock: 

1. No preemption 

2. Circular wait 

3. Mutual Exclusion 

4. Hold and wait 

 

 

Banker’s behavior  
(example of one resource type with many instances): 

 Clients are asking for loans up-to an agreed limit 
 The banker knows that not all clients need their limit simultaneously 
 All clients must achieve their limits at some point of time but not necessarily 

simultaneously 

 After fulfilling their needs, the clients will pay-back their loans  

 
Example: The banker knows that all 4 clients need 22 units together, but he has only total 10 
units 

 

As per Banker’s following points are to be maintained: 

 Always keep so many resources that satisfy the needs of at least one client 
 Multiple instances. 
 Each process must a priori claim maximum use. 
 When a process requests a resource it may have to wait.  
 When a process gets all its resources it must return them in a finite amount of time. 

 

 

 

Banker’s Algorithm – Deadlock Avoidance 
 

Deadlock Prevention 
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Mechanism for processes to communicate and to synchronize their actions: 
 
Message system – processes communicate with each other without resorting to shared 
variables 
 
IPC facility provides two operations: 

 send(message) – message size fixed or variable  

 receive(message) 
 
If P and Q wish to communicate, they need to: 

 establish a communication link between them  
 exchange messages via send/receive 

 
Implementation of communication link: 

 physical (e.g., shared memory, hardware bus) 
 logical (e.g., logical properties) 

Examples of interprocess and interthread communication facilities include: 

 Data transfer: 
o Pipes (named, dynamic – shell or process generated) 
o shared buffers or files 
o TCP/IP socket communication (named, dynamic - loop back interface or network 

interface) 
o D-Bus is an IPC mechanism offering one to many broadcast and subscription 

facilities between processes. Among other uses, it is used by graphical 
frameworks such as KDE and GNOME. 

 Shared memory 
o Between Processes 
o Between Threads (global memory) 

 Messages 
o OS provided message passing: 

send() / receive(): 

o Signals 
o Via locks, semaphores or monitors 

 

 

 

 

Interprocess Communication - IPC 
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 What is the Base register and what is the Limit register?  
 Base register: Specifies the smallest legal physical memory address.  

 Limit register: Specifies the size of the range.  

 A pair of base and limit registers specifies the logical address space.  

 The base and limit registers can be loaded only by the operating system.  

 Ex: If the base register holds 300040 and the limit register is 120900, then the program 
can legally access all addresses from 300040 through 420939 (inclusive).  

 

 

 

 

 Address binding can occur at three different stages:  

 Compile Time: if you know at compile time where the process will reside in 

memory, then absolute code can be generated.  

 Load Time: if it is not know at compile time where the process will reside 

in memory, then the compiler must generate relocatable code and the final 

binding is delayed until the load time.


 Execution Time: if the process can be moved during its execution from one 

memory segment to another, then binding must be delayed until run time.  
 

 

Base Register – Limit Register 
 

Address Binding 
 

Base register 
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 Logical Memory Address: Addresses generated by the CPU.  
 Physical Memory Address: Addresses seen by the memory unit.  
 Logical and Physical addresses are the same compile-time and load-time address binding 

schemes, and differ in the execution-time address-binding scheme.  
 

What is the Memory Management Unit (MMU)?  
 Memory Management Unit (MMU): It is a hardware device that maps the logical 

address to physical address.  

 The value in the MMU relocation register is added to every logical address generated by 
the CPU to be mapped into a physical memory address.  

 

Logical Memory and Physical Memory 
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Fixed Partitioning 
In most schemes for memory management, we can assume that the OS occupies some fixed 
portion of main memory and that the rest of main memory is available for use by multiple 
processes. The simplest scheme for managing this available memory is to partition it into 
regions with fixed boundaries. 
 
One possibility is to make use of equal-size partitions. In this case, any process whose size is 
less than or equal to the partition size can be loaded into any available partition. If all partitions 
are full and no process is in the Ready or Running state, the operating system can swap a 
process out of any of the partitions and load in another process, so that there is some work for 
the processor. There are two difficulties with the use of equal-size fixed partitions: 
• A program may be too big to fit into a partition. In this case, the programmer must design the 
program with the use of overlays so that only a portion of the program need be in main 
memory at any one time. When a module is needed that is not present, the user’s program 
must load that module into the program’s partition, overlaying whatever programs or data are 
there. 
 

Dynamic Partitioning 
To overcome some of the difficulties with fixed partitioning, an approach known as dynamic 
partitioning was developed. Again, this approach has been supplanted by more sophisticated 
memory management techniques. An important operating system that used this technique was 
IBM’s mainframe operating system, OS/MVT (Multiprogramming with a Variable Number of 
Tasks). With dynamic partitioning, the partitions are of variable length and number. When a 
process is brought into main memory, it is allocated exactly as much memory as it requires and 
no more.  
 
 
 
 
 
 
 

 Memory Partitioning 
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To satisfy a request of size n from a list of free holes, we use one of the following strategies:  

 First-Fit: Allocate the process to the first big enough hole.  
 

 Best-Fit: Allocate the process to the smallest hole that is big enough to accommodate 
the process. The must search the entire list unless ordered by size and produce the 
smallest leftover hole.  
 

 Worst-Fit: Allocate the process to the largest hole. The must search the entire list 
unless ordered by size and produce the largest leftover hole.  

 

 

The OS obviously needs to keep track of both partitions and free memory. Once created, a 

partition defined by its base address and size. Those attributes remain essentially unchanged 

for as long as the related partition exists. In addition for the purpose of process switching and 

swapping, it is important to know which partition belongs to a given process. An enhanced 

version of Partition Description Table is required to keep track of partitions in the case of 

dynamic partitioning. To imply any dynamic allocation strategies the PDT data is very much 

required. For each and every allocation of process into memory PDT access is must. The 

structure of PDT can be designed as given below: 

Partition SL No Base (in K) Size (in K) Status 

1 0 100 Allocated  

2 100 120 Allocated 

3 220 300 Not allocated 

……    

 

 

 

In computer memory/ storage, fragmentation is a phenomenon in which storage space is 

used inefficiently, reducing capacity or performance and often both. The exact consequences of 

fragmentation depend on the specific system of storage allocation in use and the particular 

form of fragmentation. In many cases, fragmentation leads to storage space being "wasted", 

and in that case the term also refers to the wasted space itself. 

Fragmentation can be one of the following:  
 External Fragmentation: Total memory space exists to satisfy a request but is not 

contiguous. It can be resulted from best-fit and first-fit in the case of dynamic memory 
allocation. 

Dynamic Partitioning strategies to allocate processes into memory 

Fragmentation 

Page Description Table 
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 Internal Fragmentation: Allocated memory may be slightly larger than the required 
memory resulted in a size difference that is memory internal to a partition but is not 
used in the case of fixed-sized partitioning.  

 
The general approach to avoiding external fragmentation is to break the physical memory into 
fixed-sized blocks and allocate memory in units based on block size.  
 
How to reduce the external fragmentation?  
To reduce the external fragmentation by:  

 Compaction: Shuffle memory contents to place all free memory together in one large 
block. It is possible only if relocation is dynamic, and is done at execution time.  

 Another possible solution: paging and segmentation.  
 

 

Non-Contiguous Memory Allocation:  
1. Paging  2.  Segments  3.  Segments with paging.  

 

 

A storage allocation scheme in which secondary memory can be addressed as though it were 
part of main memory. The addresses a program may use to reference memory are 
distinguished from the addresses the memory system uses to identify physical storage sites, 
and program-generated addresses are translated automatically to the corresponding machine 
addresses. The size of virtual storage is limited by the addressing scheme of the computer 
system and by the amount of secondary memory available and not by the actual number of 
main storage locations. 


Virtual Memory involves separation of user logical memory from physical memory.  

 Simulating more random access memory (RAM) than actually exists, allowing the 
computer to run larger programs and multiple programs concurrently.  

 A common function in most every OS and hardware platform, virtual memory uses the 
hard disk to temporarily hold what was in real memory.  

It can be implemented as:  

 Demand paging.  
 Demand segmentation.  

Non contiguous Memory Allocation types 

Virtual Memory 


